• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Non-negative Sparse Modeling of Textures

Peyré, Gabriel (2007), Non-negative Sparse Modeling of Textures, in Sgallari, Fiorella; Paragios, Nikos; Murli, Almerico, Scale Space and Variational Methods in Computer Vision First International Conference, SSVM 2007, Ischia, Italy, May 30 - June 2, 2007, Proceedings, Springer, p. 628-639

Type
Communication / Conférence
External document link
http://hal.archives-ouvertes.fr/hal-00365608/en/
Date
2007
Conference title
Scale Space and Variational Methods in Computer Vision (SSVM'07)
Conference date
2007-05
Conference city
Ischia
Conference country
Italie
Book title
Scale Space and Variational Methods in Computer Vision First International Conference, SSVM 2007, Ischia, Italy, May 30 - June 2, 2007, Proceedings
Book author
Sgallari, Fiorella; Paragios, Nikos; Murli, Almerico
Publisher
Springer
Series title
Lecture Notes in Computer Science
Series number
4485
ISBN
978-3-540-72822-1
Number of pages
931
Pages
628-639
Publication identifier
http://dx.doi.org/10.1007/978-3-540-72823-8_54
Metadata
Show full item record
Author(s)
Peyré, Gabriel
Abstract (EN)
This paper presents a statistical model for textures that uses a non-negative decomposition on a set of local atoms learned from an exemplar. This model is described by the variances and kurtosis of the marginals of the decomposition of patches in the learned dictionary. A fast sampling algorithm allows to draw a typical image from this model. The resulting texture synthesis captures the geometric features of the original exemplar. To speed up synthesis and generate structures of various sizes, a multi-scale process is used. Applications to texture synthesis, image inpainting and texture segmentation are presented.
Subjects / Keywords
Texture syntesis; sparsity; dictionary learning

Related items

Showing items related by title and author.

  • Thumbnail
    Sparse Modeling of Textures 
    Peyré, Gabriel (2009) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Modeling of Motion Perception using Dynamical Stochastic Textures 
    Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Constrained Sparse Texture Synthesis 
    Tartavel, Guillaume; Gousseau, Yann; Peyré, Gabriel (2013) Communication / Conférence
  • Thumbnail
    Locally Parallel Textures Modeling with Adapted Hilbert Spaces 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2009) Communication / Conférence
  • Thumbnail
    Locally Parallel Texture Modeling 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo