• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Two-scale simulation of Maxwell's equations

Salmon, Stéphanie; Jund, Sébastien; Abboud, Hyam; Zorgati, Hamdi; Sonnendrücker, Eric (2005-08), Two-scale simulation of Maxwell's equations, CEMRACS 2005 -Computational Aeroacoustics and Computational Fluid Dynamics in Turbulent Flows, 2005-08, Marseille, France

Type
Communication / Conférence
External document link
http://hal.archives-ouvertes.fr/hal-00139181/en/
Date
2005-08
Conference title
CEMRACS 2005 -Computational Aeroacoustics and Computational Fluid Dynamics in Turbulent Flows
Conference date
2005-08
Conference city
Marseille
Conference country
France
Metadata
Show full item record
Author(s)
Salmon, Stéphanie
Jund, Sébastien
Abboud, Hyam
Zorgati, Hamdi
Sonnendrücker, Eric
Abstract (EN)
We develop a numerical method for solving Maxwell's equations on a grid involving zones with cells of very different sizes, in order for example to compute sources coming from particles which need to be resolved on a very fine grid. The method is based on domain decomposition techniques which lead us to introduce two auxiliary problems and show theoretically how they allow us to calculate the solution of the initial problem. These two auxiliary problems are discretized using Edge Finite Elements introduced by Nedelec on two different scales which introduce some errors that we correct by setting to zero an operator we know has to be zero in the theoretical study.
Subjects / Keywords
théorie du contrôle; Equations aux dérivées partielles

Related items

Showing items related by title and author.

  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic modeling of thin curved martensitic films 
    Le Dret, Hervé; Zorgati, Hamdi (2006) Article accepté pour publication ou publié
  • Thumbnail
    Softening bilevel problems via two-scale Gibbs measures 
    Carlier, Guillaume; Mallozzi, Lina (2019) Article accepté pour publication ou publié
  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations 
    Esteban, Maria J.; Georgiev, Vladimir; Séré, Eric (1996) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo