Show simple item record

dc.contributor.authorOlla, Stefano
HAL ID: 18345
ORCID: 0000-0003-0845-1861
dc.contributor.authorEven, Nadine
dc.date.accessioned2010-09-28T14:38:24Z
dc.date.available2010-09-28T14:38:24Z
dc.date.issued2014
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4865
dc.language.isoenen
dc.subjectadiabatic boundary conditionsen
dc.subjectentropy productionen
dc.subjectrelative entropyen
dc.subjectEuler equationen
dc.subjecthydrodynamic limiten
dc.subject.ddc519en
dc.titleHydrodynamic Limit for a Hamiltonian System with Boundary Conditions and Conservative Noiseen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherINRIA – Ecole Nationale des Ponts et Chaussées;France
dc.description.abstractenWe study the hyperbolic scaling limit for a chain of N coupled anharmonic oscillators. The chain is open and with the following adiabatic boundary conditions: it is attached to a wall on the left and there is a force (tension) $\tau$ acting on the right.In order to provide the system of the good ergodic properties, we perturb the Hamiltonian dynamics with random local exchanges of velocities between the particles, so that momentum and energy are locally conserved. We prove that in the macroscopic limit the distribution of the density of particles, momentum and energy converge to the solution of the Euler equations, in the smooth regime of them.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol213
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2014
dc.relation.isversionofjnlpages561-585
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-014-0741-1
dc.identifier.urlsitehttp://fr.arXiv.org/abs/1009.2175en
dc.description.sponsorshipprivatenonen
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record