• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Compact preference representation and Boolean games

Bonzon, Elise; Lagasquie-Schiex, Marie-Christine; Lang, Jérôme; Zanuttini, Bruno (2009), Compact preference representation and Boolean games, Autonomous Agents and Multi-Agent Systems, 18, 1, p. 1-35. http://dx.doi.org/10.1007/s10458-008-9040-2

View/Open
Boolean.PDF (314.7Kb)
Type
Article accepté pour publication ou publié
Date
2009
Journal name
Autonomous Agents and Multi-Agent Systems
Volume
18
Number
1
Publisher
Kluwer Academic Publishers
Pages
1-35
Publication identifier
http://dx.doi.org/10.1007/s10458-008-9040-2
Metadata
Show full item record
Author(s)
Bonzon, Elise
Lagasquie-Schiex, Marie-Christine cc
Lang, Jérôme
Zanuttini, Bruno
Abstract (EN)
Game theory is a widely used formal model for studying strategical interactions between agents. Boolean games (Harrenstein, Logic in conflict, PhD thesis, 2004; Harrenstein et al., Theoretical Aspects of Rationality and Knowledge, pp. 287–298, San Francisco Morgan Kaufmann, 2001) yield a compact representation of 2-player zero-sum static games with binary preferences: an agent’s strategy consists of a truth assignment of the propositional variables she controls, and a player’s preferences are expressed by a plain propositional formula. These restrictions (2-player, zero-sum, binary preferences) strongly limit the expressivity of the framework. We first generalize the framework to n-player games which are not necessarily zero-sum. We give simple characterizations of Nash equilibria and dominated strategies, and investigate the computational complexity of the associated problems. Then, we relax the last restriction by coupling Boolean games with a representation, namely, CP-nets.
Subjects / Keywords
Propositional logic; Preference representation; CP-nets; Game theory

Related items

Showing items related by title and author.

  • Thumbnail
    Compact preference representation for Boolean games 
    Bonzon, Elise; Lagasquie-Schiex, Marie-Christine; Lang, Jérôme (2006) Communication / Conférence
  • Thumbnail
    Boolean Games Revisited 
    Bonzon, Elise; Lagasquie-Schiex, Marie-Christine; Lang, Jérôme; Zanuttini, Bruno (2006) Communication / Conférence
  • Thumbnail
    Jeux booléens statiques et représentation compacte de préférences 
    Bonzon, Elise; Lagasquie-Schiex, Marie-Christine; Lang, Jérôme (2006) Document de travail / Working paper
  • Thumbnail
    Effectivity functions and efficient coalitions in Boolean games 
    Bonzon, Elise; Lagasquie-Schiex, Marie-Christine; Lang, Jérôme (2012) Article accepté pour publication ou publié
  • Thumbnail
    Efficient coalitions in Boolean games 
    Bonzon, Elise; Lagasquie-Schiex, Marie-Christine; Lang, Jérôme (2008) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo