• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Heuristically Driven Front Propagation for Geodesic Paths Extraction

Thumbnail
Date
2005
Link to item file
https://hal.archives-ouvertes.fr/hal-00365623
Dewey
Probabilités et mathématiques appliquées
Sujet
Geodesic; Fast Marching; heuristic; Front Propagation
DOI
http://dx.doi.org/10.1007/11567646_15
Conference country
CHINA
Book title
Variational, Geometric, and Level Set Methods in Computer Vision Third International Workshop, VLSM 2005, Beijing, China, October 16, 2005, Proceedings
Author
Nikos Paragios, Olivier Faugeras, Tony Chan, Christoph Schnörr
Publisher
Springer
Publisher city
Berlin Heidelberg
Year
2005
ISBN
978-3-540-29348-4
Book URL
10.1007/11567646
URI
https://basepub.dauphine.fr/handle/123456789/478
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Peyré, Gabriel
Cohen, Laurent D.
Type
Communication / Conférence
Item number of pages
173-185
Abstract (EN)
In this paper we present a simple modification of the Fast Marching algorithm to speed up the computation using a heuristic. This modification leads to an algorithm that is similar in spirit to the A* algorithm used in artificial intelligence. Using a heuristic allows to extract geodesics from a single source to a single goal very quickly and with a low memory requirement. Any application that needs to compute a lot of geodesic paths can gain benefits from our algorithm. The computational saving is even more important for 3D medical images with tubular structures and for higher dimensional data.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.