• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

A Bottom-Up Method and Fast Algorithms for max independent set

Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010), A Bottom-Up Method and Fast Algorithms for max independent set, in Kaplan, Haim, 12th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Proceedings, Springer : Berlin, p. 62-73

Type
Communication / Conférence
Date
2010
Conference title
12th Scandinavian Symposium and Workshops on Algorithm Theory - SWAT'10
Conference date
2010-06
Conference city
Bergen
Conference country
Norvège
Book title
12th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Proceedings
Book author
Kaplan, Haim
Publisher
Springer
Series title
Lecture Notes in Computer Science
Series number
6139
Published in
Berlin
ISBN
978-3-642-13730-3
Number of pages
450
Pages
62-73
Publication identifier
http://dx.doi.org/10.1007/978-3-642-13731-0_7
Metadata
Show full item record
Author(s)
Bourgeois, Nicolas
Escoffier, Bruno
Paschos, Vangelis
Abstract (EN)
We first propose a new method, called “bottom-up method”, that, informally, “propagates” improvement of the worst-case complexity for “sparse” instances to “denser” ones and we show an easy though non-trivial application of it to the min set cover problem. We then tackle max independent set. Following the bottom-up method we propagate improvements of worst-case complexity from graphs of average degree d to graphs of average degree greater than d. Indeed, using algorithms for max independent set in graphs of average degree 3, we tackle max independent set in graphs of average degree 4, 5 and 6. Then, we combine the bottom-up technique with measure and conquer techniques to get improved running times for graphs of maximum degree 4, 5 and 6 but also for general graphs. The best computation bounds obtained for max independent set are O *(1.1571 n ), O *(1.1918 n ) and O *(1.2071 n ), for graphs of maximum (or more generally average) degree 4, 5 and 6 respectively, and O *(1.2127 n ) for general graphs. These results improve upon the best known polynomial space results for these cases.
Subjects / Keywords
Exact Algorithms; Max Independent Set; Bottom-Up Method

Related items

Showing items related by title and author.

  • Thumbnail
    Fast Algorithms for max independent set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis; Van Rooij, Johan (2012) Article accepté pour publication ou publié
  • Thumbnail
    An O *(1.0977 n ) Exact Algorithm for max independent set in Sparse Graphs 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Communication / Conférence
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
  • Thumbnail
    Fast Algorithms for min independent dominating set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
  • Thumbnail
    Fast algorithms for min independent dominating set 
    Bourgeois, Nicolas; Della Croce, Federico; Escoffier, Bruno; Paschos, Vangelis (2013) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo