Date
2010
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Backward stochastic differential equation; jump-diffusion process; jump constraints; penalization; quasi-variational inequalities; impulse control problems; viscosity solutions
Nom de la revue
Annals of Probability
Volume
38
Numéro
2
Date de publication
2010
Pages article
794-840
Nom de l'éditeur
Institute of Mathematical Statistics
Auteur
Zhang, Jianfeng
Pham, Huyen
Ma, Jin
Kharroubi, Idris
Type
Article accepté pour publication ou publié
Résumé en anglais
We consider a class of backward stochastic differential equations (BSDEs) driven by Brownian motion and Poisson random measure, and subject to constraints on the jump component. We prove the existence and uniqueness of the minimal solution for the BSDEs by using a penalization approach. Moreover, we show that under mild conditions the minimal solutions to these constrained BSDEs can be characterized as the unique viscosity solution of quasi-variational inequalities (QVIs), which leads to a probabilistic representation for solutions to QVIs. Such a representation in particular gives a new stochastic formula for value functions of a class of impulse control problems. As a direct consequence, this suggests a numerical scheme for the solution of such QVIs via the simulation of the penalized BSDEs.