Optimal transportation for multifractal random measures and applications
dc.contributor.author | Rhodes, Rémi | |
dc.contributor.author | Vargas, Vincent
HAL ID: 739861 | |
dc.date.accessioned | 2010-09-06T12:38:07Z | |
dc.date.available | 2010-09-06T12:38:07Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/4695 | |
dc.language.iso | en | en |
dc.subject | KPZ | en |
dc.subject | Random measures | en |
dc.subject | multifractal processes | en |
dc.subject | optimal transport | en |
dc.subject | metric | en |
dc.subject.ddc | 519 | en |
dc.title | Optimal transportation for multifractal random measures and applications | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures. This study is motivated by recent problems in the KPZ context. | en |
dc.relation.isversionofjnlname | Annales de l'I.H.P. Probabilités et Statistiques | |
dc.relation.isversionofjnlvol | 49 | |
dc.relation.isversionofjnlissue | 1 | |
dc.relation.isversionofjnldate | 2013 | |
dc.relation.isversionofjnlpages | 119-137 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1214/11-AIHP443 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00512738/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Institute of Mathematical Society | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |