Show simple item record

dc.contributor.authorDolbeault, Jean
dc.contributor.authorEsteban, Maria J.
dc.date.accessioned2010-07-23T15:07:23Z
dc.date.available2010-07-23T15:07:23Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4663
dc.language.isoenen
dc.subjectCaffarelli-Kohn-Nirenberg inequalityen
dc.subjectHardy-Sobolev inequalityen
dc.subjectSobolev spacesen
dc.subjectexistenceen
dc.subjectsymmetry breakingen
dc.subjectcompactnessen
dc.subjectradial symmetryen
dc.subjectEmden-Fowler transformationen
dc.subjectKelvin transformationen
dc.subjectextremal functionsen
dc.subjectlogarithmic Hardy inequalityen
dc.subject.ddc519en
dc.titleExtremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalitiesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpolation inequalities and Gross' logarithmic Sobolev inequality, both without weights, gives a general criterion for such an existence result in some particular cases.en
dc.relation.isversionofjnlnameProceedings of the Royal Society of Edinburgh. Section A, Mathematical and Physical Sciences
dc.relation.isversionofjnlvol142
dc.relation.isversionofjnlissue4
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages745-767
dc.relation.isversionofdoihttp://dx.doi.org/10.1017/S0308210510001101
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00496936/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherCambridge University Press
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record