dc.contributor.author | Rousseau, Judith | |
dc.contributor.author | Chopin, Nicolas | |
dc.contributor.author | Liseo, Brunero | |
dc.date.accessioned | 2010-07-23T14:57:24Z | |
dc.date.available | 2010-07-23T14:57:24Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/4659 | |
dc.language.iso | en | en |
dc.subject | rates of convergence | en |
dc.subject | Gaussian long memory processes | en |
dc.subject | FEXP priors | en |
dc.subject | consistency | en |
dc.subject | Bayesian nonparametric | en |
dc.subject.ddc | 519 | en |
dc.subject.classificationjel | C14 | en |
dc.subject.classificationjel | C11 | en |
dc.title | Bayesian nonparametric estimation of the spectral density of a long or intermediate memory Gaussian process | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | A stationary Gaussian process is said to be long-range dependent (resp., anti-persistent) if its spectral density f(λ) can be written as f(λ)=|λ|−2dg(|λ|), where 0<d<1/2 (resp., −1/2<d<0), and g is continuous and positive. We propose a novel Bayesian nonparametric approach for the estimation of the spectral density of such processes. We prove posterior consistency for both d and g, under appropriate conditions on the prior distribution. We establish the rate of convergence for a general class of priors and apply our results to the family of fractionally exponential priors. Our approach is based on the true likelihood and does not resort to Whittle’s approximation. | |
dc.identifier.citationpages | 33 | en |
dc.relation.isversionofjnlname | Annals of Statistics | |
dc.relation.isversionofjnlvol | 40 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 964-995 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1214/11-AOS955SUPP | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00504969/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Institute of Mathematical Statistics | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |