Toward the Fourier law for a weakly interacting anharmonic crystal
dc.contributor.author | Olla, Stefano
HAL ID: 18345 ORCID: 0000-0003-0845-1861 | |
dc.contributor.author | Liverani, Carlangelo | |
dc.date.accessioned | 2010-07-22T15:34:09Z | |
dc.date.available | 2010-07-22T15:34:09Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/4657 | |
dc.language.iso | en | en |
dc.subject | hypocoercivity | en |
dc.subject | Weak coupling | en |
dc.subject | scaling limits | en |
dc.subject | Ginzburg-Landau dynamics | en |
dc.subject | heat equation | en |
dc.subject | hypoellipticity | en |
dc.subject.ddc | 519 | en |
dc.title | Toward the Fourier law for a weakly interacting anharmonic crystal | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | For a system of weakly interacting anharmonic oscillators, perturbed by an energy preserving stochastic dynamics, we prove an autonomous (stochastic) evolution for the energies at large time scale (with respect to the coupling parameter). It turn out that this macroscopic evolution is given by the so called conservative (non-gradient) Ginzburg-Landau system of stochastic differential equations. The proof exploits hypocoercivity and hypoellipticity properties of the uncoupled dynamics. | en |
dc.relation.isversionofjnlname | Journal of the American Mathematical Society | |
dc.relation.isversionofjnlvol | 25 | |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 555-583 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1090/S0894-0347-2011-00724-8 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00492016/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | American Mathematical Society | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |