• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Bayesian Estimation of a Covariance Matrix: Application for Asset and Liabiliy Management

Marin, Jean-Michel; Féron, Olivier; Bouriga, Mathilde; Robert, Christian P. (2010), Bayesian Estimation of a Covariance Matrix: Application for Asset and Liabiliy Management, 9th Valencia International Meeting on Bayesian Statistics - 2010 World Meeting of the International Society for Bayesian Analysis, 2010-06, Benidorm, Espagne

Type
Communication / Conférence
Date
2010
Titre du colloque
9th Valencia International Meeting on Bayesian Statistics - 2010 World Meeting of the International Society for Bayesian Analysis
Date du colloque
2010-06
Ville du colloque
Benidorm
Pays du colloque
Espagne
Métadonnées
Afficher la notice complète
Auteur(s)
Marin, Jean-Michel cc
Féron, Olivier
Bouriga, Mathilde
Robert, Christian P.
Résumé (EN)
Many authors have considered the problem of estimating a covariance matrix in small samples. In this framework the sample covariance matrix is not robust, the solution is to impose some ad hoc structure on the covariance matrix to force it to be well-conditioned. This method is known as shrinkage. Here we approach the problem with an hierarchical bayesian perspective : we propose hierarchical priors for the covariance matrix to shrink toward diagonality. This approach draws on the works of M.J. Daniels and R.E. Kass (Nonconjugate bayesian estimation of covariance matrices and its use in hierarchical models, 1999) but we have searched to avoid any influence of the hyperparameters on the inference. We use an Inverse Wishart prior and we place flat priors on the logarithm of its hyperparameters. The problem of estimating is under the Stein’s loss function and a Markov Chain Monte Carlo sampling scheme is used to implement posterior inference in the proposed model. A simulation study allows us to assess the performance of the estimator in terms of small-sample risk. Our bayesian estimator is then applied to a real longitudinal example from portfolio selection, in which the dimension of the covariance matrix is large relative to the sample size.
Mots-clés
hierarchical priors; covariance matrix; inference; Markov chain Monte Carlo
JEL
C15 - Statistical Simulation Methods: General
C11 - Bayesian Analysis: General

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Modélisation bayésienne hiérarchique pour l'estimation de matrice de covariance - Application à la gestion actif-passif de portefeuilles financiers 
    Bourgia, Mathilde; Féron, Olivier; Marin, Jean-Michel; Robert, Christian P. (2010) Communication / Conférence
  • Vignette de prévisualisation
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Bayesian Modelling and Inference on Mixtures of Distributions 
    Marin, Jean-Michel; Mengersen, Kerrie; Robert, Christian P. (2005) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Are Risk-Averse Agents more Optimistic? A Bayesian Estimation Approach 
    Jouini, Elyès; Ben Mansour, Selima; Napp, Clotilde; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo