• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

On the Minimum Hitting Set of Bundles Problem

Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2008), On the Minimum Hitting Set of Bundles Problem, in Fleischer, Rudolf; Xu, Jinhui, Algorithmic Aspects in Information and Management, 4th International Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, springer : Berlin, p. 3-14. http://dx.doi.org/10.1007/978-3-540-68880-8_3

Type
Communication / Conférence
Date
2008
Conference title
4th International Conference on Algorithmic Aspects in Information and Management (AAIM 2008)
Conference date
2008-06
Conference city
Shanghaï
Conference country
Chine
Book title
Algorithmic Aspects in Information and Management, 4th International Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings
Book author
Fleischer, Rudolf; Xu, Jinhui
Publisher
springer
Series title
Lecture Notes in Computer Science
Series number
5034
Published in
Berlin
ISBN
978-3-540-68865-5
Pages
3-14
Publication identifier
http://dx.doi.org/10.1007/978-3-540-68880-8_3
Metadata
Show full item record
Author(s)
Angel, Eric
Bampis, Evripidis
Gourvès, Laurent
Abstract (EN)
We consider a natural generalization of the classical minimum hitting set problem, the minimum hitting set of bundles problem (mhsb) which is defined as follows. We are given a set TeX of n elements. Each element e i (i = 1, ...,n) has a non negative cost c i . A bundle b is a subset of TeX . We are also given a collection TeX of m sets of bundles. More precisely, each set S j (j = 1, ..., m) is composed of g(j) distinct bundles TeX . A solution to mhsb is a subset TeX such that for every TeX at least one bundle is covered, i.e. TeX for some l ∈ {1,2, ⋯ ,g(j)}. The total cost of the solution, denoted by TeX , is TeX . The goal is to find a solution with minimum total cost. We give a deterministic TeX -approximation algorithm, where N is the maximum number of bundles per set and M is the maximum number of sets an element can appear in. This is roughly speaking the best approximation ratio that we can obtain since, by reducing mhsb to the vertex cover problem, it implies that mhsb cannot be approximated within 1.36 when N = 2 and N − 1 − ε when N ≥ 3. It has to be noticed that the application of our algorithm in the case of the min k −sat problem matches the best known approximation ratio.
Subjects / Keywords
approximation algorithm; min k −sat; minimum hitting set

Related items

Showing items related by title and author.

  • Thumbnail
    On the Minimum Hitting Set of Bundles Problem 
    Gourvès, Laurent; Bampis, Evripidis; Angel, Eric (2009) Article accepté pour publication ou publié
  • Thumbnail
    On the hitting set of bundles problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Document de travail / Working paper
  • Thumbnail
    Approximating the Pareto Curve with Local Search for the Bicriteria TSP (1, 2) Problem (extended abstract) 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2003) Communication / Conférence
  • Thumbnail
    Approximating the Pareto curve with local search for the bicriteria TSP(1,2) problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2004) Article accepté pour publication ou publié
  • Thumbnail
    Algorithmes approchés pour le problème du voyageur de commerce multicritère 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent; Monnot, Jérôme (2005) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo