• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Minimizing the number of late jobs on a single machine under due date uncertainty

Aissi, Hassene; Aloulou, Mohamed Ali; Kovalyov, Mikhail Y. (2011), Minimizing the number of late jobs on a single machine under due date uncertainty, Journal of Scheduling, 14, 4, p. 351-360. http://dx.doi.org/10.1007/s10951-010-0183-z

Type
Article accepté pour publication ou publié
Date
2011
Nom de la revue
Journal of Scheduling
Volume
14
Numéro
4
Éditeur
Springer
Pages
351-360
Identifiant publication
http://dx.doi.org/10.1007/s10951-010-0183-z
Métadonnées
Afficher la notice complète
Auteur(s)
Aissi, Hassene
Aloulou, Mohamed Ali
Kovalyov, Mikhail Y.
Résumé (EN)
We study the problem of minimizing the number of late jobs on a single machine where job processing times are known precisely and due dates are uncertain. The uncertainty is captured through a set of scenarios. In this environment, an appropriate criterion to select a schedule is to find one with the best worst-case performance, which minimizes the maximum number of late jobs over all scenarios. For a variable number of scenarios and two distinct due dates over all scenarios, the problem is proved NP-hard in the strong sense and non-approximable in pseudo-polynomial time with approximation ratio less than 2. It is polynomially solvable if the number s of scenarios and the number v of distinct due dates over all scenarios are given constants. An O(nlog n) time s-approximation algorithm is suggested for the general case, where n is the number of jobs, and a polynomial 3-approximation algorithm is suggested for the case of unit-time jobs and a constant number of scenarios. Furthermore, an O(n s+v−2/(v−1) v−2) time dynamic programming algorithm is presented for the case of unit-time jobs. The problem with unit-time jobs and the number of late jobs not exceeding a given constant value is solvable in polynomial time by an enumeration algorithm. The obtained results are related to a min-max assignment problem, an exact assignment problem and a multi-agent scheduling problem.
Mots-clés
Scheduling; Assignment; Robustness; Min-max approach; Scenarios; Uncertainty; Single machine

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Evaluating flexible solutions in single machine scheduling via objective function maximization: the study of a computational complexity 
    Portmann, Marie-Claude; Kovalyov, Mikhail Y.; Aloulou, Mohamed Ali (2007) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Maximization of single machine scheduling 
    Aloulou, Mohamed Ali; Kovalyov, Mikhail Y.; Portmann, Marie-Claude (2004) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Worst case performance evaluation of flexible solutions in single machine scheduling 
    Aloulou, Mohamed Ali; Kovalyov, Mikhail Y.; Portmann, Marie-Claude (2003) Communication / Conférence
  • Vignette de prévisualisation
    The complexity of single machine scheduling problems under scenario-based uncertainty 
    Della Croce, Federico; Aloulou, Mohamed Ali (2008) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Complexity of single machine scheduling problems under scenario-based uncertainty 
    Della Croce, Federico; Aloulou, Mohamed Ali (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo