• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fast algorithms for Max Independant Set in graphs of small average degree

van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008), Fast algorithms for Max Independant Set in graphs of small average degree. https://basepub.dauphine.fr/handle/123456789/4496

View/Open
cahier_277.pdf (513.9Kb)
Type
Document de travail / Working paper
Date
2008
Series title
Cahier du LAMSADE
Published in
Paris
Pages
29
Metadata
Show full item record
Author(s)
van Rooij, Johan
Bourgeois, Nicolas
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Max Independent Set (MIS) is a paradigmatic problem in theoretical computer science and numerous studies tackle its resolution by exact algorithms with non-trivial worst-case complexity. The best such complexity is, to our knowledge, the $O^*(1.1889^n)$ algorithm claimed by J.M. Robson (T.R. 1251-01, LaBRI, Univ. Bordeaux I, 2001) in his unpublished technical report. We also quote the $O^*(1.2210^n)$ algorithm by Fomin and al. (in Proc. SODA'06, pages 18-25, 2006), that is the best published result about MIS.In this paper we settle MIS in (connected) graphs with "small" average degree, more precisely with average degree at most 3, 4, 5 and 6. Dealing with graphs of average degree at most 3, the best bound known is the recent $O^*(1.0977^n)$ bound by N. Bourgeois and al. in Proc. IWPEC'08, pages 55-65, 2008). Here we improve this result down to $O^*(1.0854^n)$ by proposing finer and more powerful reduction rules.We then propose a generic method showing how improvement of the worst-case complexity for MIS in graphs of average degree $d$ entails improvement of it in any graph of average degree greater than $d$ and, based upon it, we tackle MIS in graphs of average degree 4, 5 and 6.For MIS in graphs with average degree 4, we provide an upper complexity bound of $O^*(1.1571^n)$ that outperforms the best known bound of $O^*(1.1713^n)$ by R. Beigel (Proc. SODA'99, pages 856-857, 1999).For MIS in graphs of average degree at most 5 and 6, we provide bounds of $O^*(1.1969^n)$ and $O^*(1.2149^n)$, respectively, that improve upon the corresponding bounds of $O^*(1.2023^n)$ and $O^*(1.2172^n)$ in graphs of maximum degree 5 and 6 by (Fomin et al., 2006).
Subjects / Keywords
Max Independant Set; Algorithms

Related items

Showing items related by title and author.

  • Thumbnail
    Maximum Independent Set in Graphs of Average Degree at Most Three in O(1.08537^n) 
    Van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
  • Thumbnail
    Fast Algorithms for max independent set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis; Van Rooij, Johan (2012) Article accepté pour publication ou publié
  • Thumbnail
    An O *(1.0977 n ) Exact Algorithm for max independent set in Sparse Graphs 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Communication / Conférence
  • Thumbnail
    A Bottom-Up Method and Fast Algorithms for max independent set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo