Random Sensing of Geometric Images
dc.contributor.author | Peyré, Gabriel
HAL ID: 1211 | |
dc.date.accessioned | 2009-06-24T13:38:52Z | |
dc.date.available | 2009-06-24T13:38:52Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/446 | |
dc.language.iso | en | en |
dc.subject | bandlets | |
dc.subject | Compressed sensing | |
dc.subject | best basis | |
dc.subject.ddc | 519 | en |
dc.title | Random Sensing of Geometric Images | |
dc.type | Communication / Conférence | |
dc.description.abstracten | This paper proposes an extension of compressed sensing that allows to express the sparsity prior in a dictionary of bases. This enables the use of the universal sampling strategy of compressed sensing together with an adaptive recovery process that adapts the basis to the structure of the sensed signal. A fast greedy scheme is used during reconstruction to estimate the best basis using an iterative refinement. Numerical experiments on geometrical images show that adaptivity is indeed crucial to capture the structures of complex natural signals. | |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.conftitle | NeuroComp'06 | |
dc.relation.confcity | Pont-à-Mousson | |
dc.relation.confcountry | FRANCE | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.date.updated | 2017-09-21T13:38:37Z |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |