Show simple item record

dc.contributor.authorDhahri, Ameur
dc.contributor.authorAccardi, Luigi
dc.date.accessioned2010-06-03T14:03:34Z
dc.date.available2010-06-03T14:03:34Z
dc.date.issued2010
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4272
dc.language.isoenen
dc.subjectHeseinberg groupen
dc.subjectGalilei Algebraen
dc.subjectGalilei groupen
dc.subjectHeisenberg algebraen
dc.subject.ddc512en
dc.titlePolynomial extensions of the Weyl C*-algebraen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe introduce higher order (polynomial) extensions of the unique (up to isomorphisms) non trivial central extension of the Heisenberg algebra. Using the boson representation of the latter, we construct the corresponding polynomial analogue of the Weyl C*-algebra and use this result to deduce the explicit form of the composition law of the associated generalization of the 1-dimensional Heisenberg group. These results are used to calculate the vacuum characteristic func- tions as well as the moments of the observables in the Galilei algebra. The continuous extensions of these objects gives a new type of second quantization which even in the quadratic case is quite different from the quadratic Fock functor.en
dc.publisher.nameUniversité Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages32en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00483172/fr/en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelAlgèbreen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record