Show simple item record

dc.contributor.authorToscani, Giuseppe
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.date.accessioned2010-06-02T14:00:06Z
dc.date.available2010-06-02T14:00:06Z
dc.date.issued2011
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4268
dc.language.isoenen
dc.subjectasymptotic expansionen
dc.subjectsecond momenten
dc.subjectsharp ratesen
dc.subjectintermediate asymptoticsen
dc.subjectFast diffusion equationen
dc.subjectporous media equationen
dc.subjectBarenblatt solutionsen
dc.subjectHardy-Poincaré inequalitiesen
dc.subjectlarge time behaviouren
dc.subjectoptimal constantsen
dc.subject.ddc515en
dc.titleFast diffusion equations: matching large time asymptotics by relative entropy methodsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenA non self-similar change of coordinates provides improved matching asymptotics of the solutions of the fast diffusion equation for large times, compared to already known results, in the range for which Barenblatt solutions have a finite second moment. The method is based on relative entropy estimates and a time-dependent change of variables which is determined by second moments, and not by the scaling corresponding to the self-similar Barenblatt solutions, as it is usually done.en
dc.relation.isversionofjnlnameKinetic and Related Models
dc.relation.isversionofjnlvol4
dc.relation.isversionofjnlissue3
dc.relation.isversionofjnldate2011
dc.relation.isversionofjnlpages701-716
dc.relation.isversionofdoihttp://dx.doi.org/10.3934/krm.2011.4.701
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00482898/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherAmerican Institute of Mathematical Sciences
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record