• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Incomplete information tables and rough classification

Stefanowski, Jerzy; Tsoukiàs, Alexis (2002), Incomplete information tables and rough classification, Computational Intelligence, 17, 3, p. 545-566. http://dx.doi.org/10.1111/0824-7935.00162

View/Open
Jrkalx73.pdf (272.1Kb)
Type
Article accepté pour publication ou publié
Date
2002
Journal name
Computational Intelligence
Volume
17
Number
3
Publisher
Wiley
Pages
545-566
Publication identifier
http://dx.doi.org/10.1111/0824-7935.00162
Metadata
Show full item record
Author(s)
Stefanowski, Jerzy
Tsoukiàs, Alexis cc
Abstract (EN)
The rough set theory, based on the original definition of the indiscernibility relation, is not useful for analysing incomplete information tables where some values of attributes are unknown. In this paper we distinguish two different semantics for incomplete information: the "missing value" semantics and the "absent value" semantics. The already known approaches, e.g. based on the tolerance relations, deal with the missing value case. We introduce two generalisations of the rough sets theory to handle these situations. The first generalisation introduces the use of a non symmetric similarity relation in order to formalise the idea of absent value semantics. The second proposal is based on the use of valued tolerance relations. A logical analysis and the computational experiments show that for the valued tolerance approach it is possible to obtain more informative approximations and decision rules than using the approach based on the simple tolerance relation.
Subjects / Keywords
decision rules; valued tolerance relation; similarity relation; fuzzy sets; rough sets; incomplete information

Related items

Showing items related by title and author.

  • Thumbnail
    A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics 
    Tsoukiàs, Alexis (2002) Article accepté pour publication ou publié
  • Thumbnail
    Induction of decision rules and classification in the valued tolerance approach 
    Stefanowski, Jerzy; Tsoukiàs, Alexis (2002) Communication / Conférence
  • Thumbnail
    Transparency of Classification Systems for Clinical Decision Support 
    Richard, Antoine; Mayag, Brice; Talbot, François; Tsoukiàs, Alexis; Meinard, Yves (2020) Communication / Conférence
  • Thumbnail
    Rapport de Prospective du Conseil Scientifique de l’Institut des Sciences de l’Information et leurs Interactions (INS2I) 
    Barillot, Christian; Queinnec, Isabelle; Fijalkow, Inbar; Theoleyre, Fabrice; Touzet, Hélène; Tsoukias, Alexis (2018) Rapport
  • Thumbnail
    Towards an analytics and an ethics of expertise: Learning from decision aiding experiences in public risk assessment and risk management 
    Merad, Myriam; Dechy, Nicolas; Llory, Michel; Marcel, Frédéric; Tsoukiàs, Alexis (2012) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo