Show simple item record

dc.contributor.authorForges, Françoise
dc.contributor.authorMinelli, Enrico
dc.date.accessioned2010-05-05T13:36:59Z
dc.date.available2010-05-05T13:36:59Z
dc.date.issued2009
dc.identifier.issn0022-0531
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/4099
dc.language.isoenen
dc.subjectRevealed preferences
dc.subjectGARP
dc.subjectRational choice
dc.subjectWARP
dc.subjectSARP
dc.subject.ddc332en
dc.subject.classificationjelD11en
dc.subject.classificationjelD43en
dc.subject.classificationjelC72en
dc.titleAfriat's theorem for general budget sets
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenAfriat proved the equivalence of a variant of the strong axiom of revealed preference and the existence of a solution to a set of linear inequalities. From this solution he constructed a utility function rationalizing the choices of a competitive consumer. We extend Afriat's theorem to a class of nonlinear, nonconvex budget sets. We thereby obtain testable implications of rational behavior for a wide class of economic environments, and a constructive method to derive individual preferences from observed choices. We also show that by increasing in a regular way the number of observed choices from our class of budget sets one can fully identify the underlying preference relation.
dc.relation.isversionofjnlnameJournal of Economic Theory
dc.relation.isversionofjnlvol144
dc.relation.isversionofjnlissue1
dc.relation.isversionofjnldate2009
dc.relation.isversionofjnlpages135-145
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.jet.2008.03.002
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherAcademic Press
dc.subject.ddclabelEconomie financièreen
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2017-09-13T14:10:32Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record