• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Bayesian Inference and Computation

Rousseau, Judith; Marin, Jean-Michel; Robert, Christian P. (2011), Bayesian Inference and Computation, in Girolami, Mark; Stumpf, Michael; Balding, David, Handbook of Statistical Systems Biology, Wiley, p. 39-65

Type
Chapitre d'ouvrage
External document link
http://hal.archives-ouvertes.fr/hal-00473021/fr/
Date
2011
Book title
Handbook of Statistical Systems Biology
Book author
Girolami, Mark; Stumpf, Michael; Balding, David
Publisher
Wiley
ISBN
978-0470710869
Number of pages
600
Pages
39-65
Metadata
Show full item record
Author(s)
Rousseau, Judith
Marin, Jean-Michel cc
Robert, Christian P.
Abstract (EN)
This chapter provides a overview of Bayesian inference, mostly emphasising that it is a universal method for summarising uncertainty and making estimates and predictions using probability statements conditional on observed data and an assumed model (Gelman 2008). The Bayesian perspective is thus applicable to all aspects of statistical inference, while being open to the incorporation of information items resulting from earlier experiments and from expert opinions. We provide here the basic elements of Bayesian analysis when considered for standard models, refering to Marin and Robert (2007) and to Robert (2007) for book-length entries.1 In the following, we refrain from embarking upon philosophical discussions about the nature of knowledge (see, e.g., Robert 2007, Chapter 10), opting instead for a mathematically sound presentation of an eminently practical statistical methodology. We indeed believe that the most convincing arguments for adopting a Bayesian version of data analyses are in the versatility of this tool and in the large range of existing applications, rather than in those polemical arguments.
Subjects / Keywords
Bayesian Analysis
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Relevant statistics for Bayesian model choice 
    Rousseau, Judith; Robert, Christian P.; Pillai, Natesh S.; Marin, Jean-Michel (2014) Article accepté pour publication ou publié
  • Thumbnail
    Evaluating statistic appropriateness for Bayesian model choice 
    Rousseau, Judith; Robert, Christian P.; Pillai, Natesh S.; Marin, Jean-Michel (2011) Document de travail / Working paper
  • Thumbnail
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Modelling and Inference on Mixtures of Distributions 
    Marin, Jean-Michel; Mengersen, Kerrie; Robert, Christian P. (2005) Chapitre d'ouvrage
  • Thumbnail
    Computational Solutions for Bayesian Inference in Mixture Models 
    Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo