• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On computational tools for Bayesian data analysis

Robert, Christian P.; Marin, Jean-Michel (2010), On computational tools for Bayesian data analysis, in Böcker, Klaus, Rethinking Risk Measurement and Reporting, Risk Books : London

Type
Chapitre d'ouvrage
External document link
http://hal.archives-ouvertes.fr/hal-00473020/fr/
Date
2010
Book title
Rethinking Risk Measurement and Reporting
Book author
Böcker, Klaus
Publisher
Risk Books
Published in
London
ISBN
978-1-906348-40-3
Number of pages
527
Metadata
Show full item record
Author(s)
Robert, Christian P.
Marin, Jean-Michel cc
Abstract (EN)
While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.
Subjects / Keywords
latent variables models; Monte Carlo methods; Bayesian inference; adaptivity; Approximate Bayesian Computation techniques; MCMC algorithms; model choice
JEL
C15 - Statistical Simulation Methods: General
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Computational Solutions for Bayesian Inference in Mixture Models 
    Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
  • Thumbnail
    Bayesian Core: A practical approach to computational Bayesian statistics 
    Marin, Jean-Michel; Robert, Christian P. (2007) Ouvrage
  • Thumbnail
    Approximate Bayesian Computational methods 
    Marin, Jean-Michel; Pudlo, Pierre; Robert, Christian P.; Ryder, Robin J. (2012) Article accepté pour publication ou publié
  • Thumbnail
    Why approximate Bayesian computational (ABC) methods cannot handle model choice problems 
    Pillai, Natesh S.; Marin, Jean-Michel; Robert, Christian P. (2011-01) Document de travail / Working paper
  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo