Weighted Nash Inequalities
Bolley, François; Gentil, Ivan; Bakry, Dominique (2012), Weighted Nash Inequalities, Revista Matematica Iberoamericana, 28, 3, p. 879-906. 10.4171/RMI/695
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1004.3456v2Date
2012Journal name
Revista Matematica IberoamericanaVolume
28Number
3Publisher
Consejo Superior de Investigaciones Científicas
Pages
879-906
Publication identifier
Metadata
Show full item recordAbstract (EN)
Nash or Sobolev inequalities are known to be equivalent to ultracontractive properties of Markov semigroups, hence to uniform bounds on their kernel densities. In this work we present a simple and extremely general method, based on weighted Nash inequalities, to obtain non-uniform bounds on the kernel densities. Such bounds imply a control on the trace or the Hilbert-Schmidt norm of the heat kernels. We illustrate the method on the heat kernel on $\dR$ naturally associated with the measure with density $C_a\exp(-|x|^a)$, with $1Subjects / Keywords
Super-Poincaré inequality; Ultracontractivity; Heat kernel; Nash inequalityRelated items
Showing items related by title and author.
-
Bakry, Dominique; Bolley, François; Gentil, Ivan (2010) Communication / Conférence
-
Bolley, François; Gentil, Ivan (2010) Communication / Conférence
-
Bolley, François; Gentil, Ivan (2010) Article accepté pour publication ou publié
-
Bakry, Dominique; Bolley, François; Gentil, Ivan (2012) Article accepté pour publication ou publié
-
Dolbeault, Jean; Gentil, Ivan; Guillin, Arnaud; Wang, Feng-Yu (2008) Article accepté pour publication ou publié