• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Approximation of the Clustered Set Covering Problem

Thumbnail
Date
2010
Dewey
Recherche opérationnelle
Sujet
Approximation; NP-hardness; Maximal Coverage; Set Covering; Integer Programming
Journal issue
Electronic Notes in Discrete Mathematics
Volume
36
Publication date
08-2010
Article pages
479-485
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.endm.2010.05.061
Conference name
ISCO International Symposium on Combinatorial Optimization
Conference date
03-2010
Conference city
Hammamet
Conference country
Tunisie
URI
https://basepub.dauphine.fr/handle/123456789/4023
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Alfandari, Laurent
Monnot, Jérôme
Type
Communication / Conférence
Abstract (EN)
We define a NP-hard clustered variant of the Set Covering Problem where subsets are partitioned into K clusters and a fixed cost is paid for selecting at least one subset in a given cluster. This variant can reformulate as a master problem various multicommodity flow problems in transportation planning. We show that the problem is approximable within ratio (1 + ǫ)(e/e− 1)H(q), where q is the maximum number of elements covered by a cluster and H(q) = Pq i=1 1 i .

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.