Compositions of Graphs and the Triangle-Free Subgraph Polytope
dc.contributor.author | Bendali, Fatiha
HAL ID: 172499 | |
dc.contributor.author | Mailfert, Jean
HAL ID: 20286 | |
dc.contributor.author | Mahjoub, Ali Ridha | |
dc.date.accessioned | 2010-04-13T15:37:43Z | |
dc.date.available | 2010-04-13T15:37:43Z | |
dc.date.issued | 2002 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3962 | |
dc.language.iso | en | en |
dc.subject | TDI | en |
dc.subject | facet | en |
dc.subject | polytope | en |
dc.subject | triangle-free subgraph | en |
dc.subject | 3-sum | en |
dc.subject | composition of polyhedra | en |
dc.subject.ddc | 511 | en |
dc.title | Compositions of Graphs and the Triangle-Free Subgraph Polytope | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper, we study a composition (decomposition) technique for the triangle-free subgraph polytope in graphs which are decomposable by means of 3-sums satisfying some property. If a graph G decomposes into two graphs G 1 and G 2, we show that the triangle-free subgraph polytope of G can be described from two linear systems related to G 1 and G 2. This gives a way to characterize this polytope on graphs that can be recursively decomposed. This also gives a procedure to derive new facets for this polytope. We also show that, if the systems associated with G 1 and G 2 are TDI, then the system characterizing the polytope for G is TDI. This generalizes previous results in R. Euler and A.R. Mahjoub (Journal of Comb. Theory series B, vol. 53, no. 2, pp. 235–259, 1991) and A.R. Mahjoub (Discrete Applied Math., vol. 62, pp. 209–219, 1995). | en |
dc.relation.isversionofjnlname | Journal of Combinatorial Optimization | |
dc.relation.isversionofjnlvol | 6 | en |
dc.relation.isversionofjnlissue | 4 | en |
dc.relation.isversionofjnldate | 2002-12 | |
dc.relation.isversionofjnlpages | 359-381 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1023/A:1019518830361 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |