• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Compositions of Graphs and Polyhedra IV: Acyclic Spanning Subgraphs

Barahona, Francisco; Fonlupt, Jean; Mahjoub, Ali Ridha (1994), Compositions of Graphs and Polyhedra IV: Acyclic Spanning Subgraphs, SIAM Journal on Discrete Mathematics, 7, 3, p. 390-402. http://dx.doi.org/10.1137/S0895480190182691

Type
Article accepté pour publication ou publié
Date
1994
Journal name
SIAM Journal on Discrete Mathematics
Volume
7
Number
3
Publisher
SIAM
Pages
390-402
Publication identifier
http://dx.doi.org/10.1137/S0895480190182691
Metadata
Show full item record
Author(s)
Barahona, Francisco
Fonlupt, Jean
Mahjoub, Ali Ridha
Abstract (EN)
Given a directed graph $D$ that has a two-vertex cut, this paper describes a technique to derive a linear system that defines the acyclic subgraph polytope of $D$ from systems related to the pieces. It also gives a technique to describe facets of this polytope by composition of facets for the pieces. The authors prove that, if the systems for the pieces are totally dual integral (TDI), then the system for $D$ is also. The authors prove that the "cycle inequalities" form a TDI system for any orientation of $K_5$. These results are combined with Lucchesi–Younger theorem and a theorem of Wagner to prove that, for graphs with no $K_{3,3} $ minor, the cycle inequalities characterize the acyclic subgraph polytope and form a TDI system. This shows that, for this class of graphs, the cardinality of a minimum feedback set is equal to the maximum number of arc disjoint cycles. For planar graphs, this is a consequence of the Lucchesi–Younger theorem.
Subjects / Keywords
Polytope; acyclic subgraphs; composition of polyhedra; Polyhedral combinatorics

Related items

Showing items related by title and author.

  • Thumbnail
    Composition of graphs and polyhedra I : Balanced induced subgraphs and acyclic subgraphs 
    Barahona, Francisco; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
  • Thumbnail
    Composition of graphs and polyhedra III : Graphs with No $W_4$ minor 
    Barahona, Francisco; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
  • Thumbnail
    Composition of graphs and polyhedra II : Stable Sets 
    Barahona, Francisco; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
  • Thumbnail
    Compositions of Graphs and the Triangle-Free Subgraph Polytope 
    Bendali, Fatiha; Mailfert, Jean; Mahjoub, Ali Ridha (2002) Article accepté pour publication ou publié
  • Thumbnail
    Two edge connected spanning subgraphs and polyhedra 
    Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo