• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Composition of graphs and polyhedra III : Graphs with No $W_4$ minor

Thumbnail
Date
1994
Dewey
Principes généraux des mathématiques
Sujet
compact systems; stable set polytope; composition of polyhedra; Polyhedral combinatorics
Journal issue
SIAM Journal on Discrete Mathematics
Volume
7
Number
3
Publication date
05-1994
Article pages
372-389
Publisher
SIAM
DOI
http://dx.doi.org/10.1137/S089548019018268X
URI
https://basepub.dauphine.fr/handle/123456789/3955
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Barahona, Francisco
Mahjoub, Ali Ridha
Type
Article accepté pour publication ou publié
Abstract (EN)
The authors characterize the stable set polytope for graphs that do not have a 4-wheel as a minor. The authors prove that the nontrivial facets are either "edge" inequalities or can be obtained by composing "odd cycles" and "subdivisions of $K_4 $." By adding some extra variables, it is shown that the stable set problem for these graphs can be formulated as a linear program of polynomial size.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.