Composition of graphs and polyhedra III : Graphs with No $W_4$ minor
Barahona, Francisco; Mahjoub, Ali Ridha (1994), Composition of graphs and polyhedra III : Graphs with No $W_4$ minor, SIAM Journal on Discrete Mathematics, 7, 3, p. 372-389. http://dx.doi.org/10.1137/S089548019018268X
Type
Article accepté pour publication ou publiéDate
1994Journal name
SIAM Journal on Discrete MathematicsVolume
7Number
3Publisher
SIAM
Pages
372-389
Publication identifier
Metadata
Show full item recordAbstract (EN)
The authors characterize the stable set polytope for graphs that do not have a 4-wheel as a minor. The authors prove that the nontrivial facets are either "edge" inequalities or can be obtained by composing "odd cycles" and "subdivisions of $K_4 $." By adding some extra variables, it is shown that the stable set problem for these graphs can be formulated as a linear program of polynomial size.Subjects / Keywords
compact systems; stable set polytope; composition of polyhedra; Polyhedral combinatoricsRelated items
Showing items related by title and author.
-
Barahona, Francisco; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
-
Barahona, Francisco; Fonlupt, Jean; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
-
Barahona, Francisco; Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
-
Mahjoub, Ali Ridha; Barahona, Francisco; Baïou, Mourad (2011) Chapitre d'ouvrage
-
Bendali, Fatiha; Mailfert, Jean; Mahjoub, Ali Ridha (2002) Article accepté pour publication ou publié