Show simple item record

dc.contributor.authorCarlier, Guillaume
dc.contributor.authorNazaret, Bruno
dc.date.accessioned2009-06-23T08:53:04Z
dc.date.available2009-06-23T08:53:04Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/390
dc.language.isoenen
dc.subjectOptimal transportationen
dc.subjectmulti-marginals problems
dc.subjectdeterminant
dc.subjectdisintegrations
dc.subject.ddc519en
dc.titleOptimal transportation for the determinanten
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenAmong $\R^3$-valued triples of random vectors $(X,Y,Z)$ having fixed marginal probability laws, what is the best way to jointly draw $(X,Y,Z)$ in such a way that the simplex generated by $(X,Y,Z)$ has maximal average volume? Motivated by this simple question, we study optimal transportation problems with several marginals when the objective function is the determinant or its absolute value.en
dc.relation.isversionofjnlnameESAIM. COCV
dc.relation.isversionofjnlvol14en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages678-698en
dc.relation.isversionofdoihttp://dx.doi.org/10.1051/cocv:2008006en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00118459/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherEDP Sciencesen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record