• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A Projection Approach to the Numerical Analysis of Limit Load Problems

Peyré, Gabriel; Ionescu, Ioan; Comte, Myriam; Carlier, Guillaume (2011), A Projection Approach to the Numerical Analysis of Limit Load Problems, Mathematical Models and Methods in Applied Sciences, 21, 6, p. 1291-1316. http://dx.doi.org/10.1142/S0218202511005325

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00450000/fr/
Date
2011
Journal name
Mathematical Models and Methods in Applied Sciences
Volume
21
Number
6
Publisher
World Scientific
Pages
1291-1316
Publication identifier
http://dx.doi.org/10.1142/S0218202511005325
Metadata
Show full item record
Author(s)
Peyré, Gabriel
Ionescu, Ioan
Comte, Myriam
Carlier, Guillaume
Abstract (EN)
This paper proposes a numerical scheme to approximate the solution of (vectorial) limit load problems. The method makes use of a strictly convex perturbation of the problem, which corresponds to a projection of the deformation field under bounded deformation and incompressibility constraints. The discretized formulation of this perturbation converges to the solution of the original landslide problem when the amplitude of the perturbation tends to zero. The projection is computed numerically with a multi-steps gradient descent on the dual formation of the problem.
Subjects / Keywords
functions of bounded deformation; penalizations; Nesterov algorithm; Limit load analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Approximation of Maximal Cheeger Sets by Projection 
    Carlier, Guillaume; Comte, Myriam; Peyré, Gabriel (2009) Article accepté pour publication ou publié
  • Thumbnail
    A Γ-Convergence Result for the Upper Bound Limit Analysis of Plates 
    Bleyer, Jérémy; Carlier, Guillaume; Duval, Vincent; Mirebeau, Jean-Marie; Peyré, Gabriel (2016) Article accepté pour publication ou publié
  • Thumbnail
    On the selection of maximal Cheeger sets 
    Buttazzo, Giuseppe; Carlier, Guillaume; Comte, Myriam (2007-03) Article accepté pour publication ou publié
  • Thumbnail
    Iterative Bregman Projections for Regularized Transportation Problems 
    Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    On a weighted total variation minimization problem 
    Comte, Myriam; Carlier, Guillaume (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo