Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms
dc.contributor.author | Viterbo, Claude
HAL ID: 20809 ORCID: 0000-0001-5764-8391 | |
dc.contributor.author | Sorrentino, Alfonso | |
dc.date.accessioned | 2010-04-07T10:16:58Z | |
dc.date.available | 2010-04-07T10:16:58Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3871 | |
dc.language.iso | en | en |
dc.subject | Asymptotic Hofer distance | en |
dc.subject | action-minimizing measure | |
dc.subject | symplectic homogenization | |
dc.subject | Mather's beta function | |
dc.subject | Mather's minimal average action | |
dc.subject | Viterbo distance | |
dc.subject | Mather theory | |
dc.subject | Aubry–Mather theory | |
dc.subject.ddc | 515 | en |
dc.title | Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this article we prove that for a smooth fiberwise convex Hamiltonian, the asymptotic Hofer distance from the identity gives a strict upper bound to the value at $0$ of Mather's $\beta$ function, thus providing a negative answer to a question asked by K. Siburg in \cite{Siburg1998}. However, we show that equality holds if one considers the asymptotic distance defined in \cite{Viterbo1992}. | en |
dc.relation.isversionofjnlname | Geometry and Topology | |
dc.relation.isversionofjnlvol | 14 | |
dc.relation.isversionofjnlissue | 4 | |
dc.relation.isversionofjnldate | 2010 | |
dc.relation.isversionofjnlpages | 2383–2403 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.2140/gt.2010.14.2383 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00458323/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Mathematical Sciences Publishers | |
dc.subject.ddclabel | Analyse | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |