Show simple item record

dc.contributor.authorDella Croce, Federico
dc.contributor.authorPaschos, Vangelis
dc.contributor.authorTsoukiàs, Alexis
HAL ID: 740501
ORCID: 0000-0001-5772-3988
dc.date.accessioned2010-04-06T12:04:45Z
dc.date.available2010-04-06T12:04:45Z
dc.date.issued1999
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/3842
dc.language.isoenen
dc.subjectCombinatorial optimizationen
dc.subjectBottleneck problemen
dc.subjectLexicographic problemen
dc.subject.ddc003en
dc.titleAn improved general procedure for lexicographic bottleneck problemsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn combinatorial optimization, the bottleneck (or minmax) problems are those problems where the objective is to find a feasible solution such that its largest cost coefficient elements have minimum cost. Here we consider a generalization of these problems, where under a lexicographic rule we want to minimize the cost also of the second largest cost coefficient elements, then of the third largest cost coefficients, and so on. We propose a general rule which leads, given the considered problem, to a vectorial version of the solution procedure for the underlying sum optimization (minsum) problem. This vectorial procedure increases by a factor of k (where k is the number of different cost coefficients) the complexity of the corresponding sum optimization problem solution procedure.en
dc.relation.isversionofjnlnameOperations Research Letters
dc.relation.isversionofjnlvol24en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate1999-05
dc.relation.isversionofjnlpages187-194en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/S0167-6377(99)00013-9en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelRecherche opérationnelleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record