Date
2000
Indexation documentaire
Recherche opérationnelle
Subject
k-connected subgraphs; submodular functions; separation problem; Partition inequalities
Nom de la revue
Mathematics of Operations Research
Volume
25
Numéro
2
Date de publication
05-2000
Pages article
243-254
Nom de l'éditeur
Informs
Auteur
Baïou, Mourad
Barahona, Francisco
Mahjoub, Ali Ridha
Type
Article accepté pour publication ou publié
Résumé en anglais
Given a graph G = (V,E) with nonnegative weights x(e) for each edge e, a partition inequality is of the form x({delta}(S1,...,Sp))≥ap+b. Here {delta}(S1,...,Sp) denotes the multicut defined by a partition S1,...,Sp of V. Partition inequalities arise as valid inequalities for optimization problems related to k-connectivity. We give a polynomial algorithm for the associated separation problem. This is based on an algorithm for finding the minimum of x({delta}(S1,...,Sp))–p that reduces to minimizing a symmetric submodular function. This is handled with the recent algorithm of Queyranne. We also survey some applications of partition inequalities.