• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Separating Partition Inequalities

Thumbnail
Date
2000
Dewey
Recherche opérationnelle
Sujet
k-connected subgraphs; submodular functions; separation problem; Partition inequalities
Journal issue
Mathematics of Operations Research
Volume
25
Number
2
Publication date
05-2000
Article pages
243-254
Publisher
Informs
DOI
http://dx.doi.org/10.1287/moor.25.2.243.12223
URI
https://basepub.dauphine.fr/handle/123456789/3824
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Baïou, Mourad
Barahona, Francisco
Mahjoub, Ali Ridha
Type
Article accepté pour publication ou publié
Abstract (EN)
Given a graph G = (V,E) with nonnegative weights x(e) for each edge e, a partition inequality is of the form x({delta}(S1,...,Sp))≥ap+b. Here {delta}(S1,...,Sp) denotes the multicut defined by a partition S1,...,Sp of V. Partition inequalities arise as valid inequalities for optimization problems related to k-connectivity. We give a polynomial algorithm for the associated separation problem. This is based on an algorithm for finding the minimum of x({delta}(S1,...,Sp))–p that reduces to minimizing a symmetric submodular function. This is handled with the recent algorithm of Queyranne. We also survey some applications of partition inequalities.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.