• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Quantitative uniform in time chaos propagation for Boltzmann collision processes

Thumbnail
Date
2010
Publisher city
Paris
Publisher
Université Paris-Dauphine
Link to item file
http://hal.archives-ouvertes.fr/hal-00447988/fr/
Dewey
Probabilités et mathématiques appliquées
Sujet
hard spheres; non cutoff; Maxwell molecules; Boltzmann equation; collision process; jump process; uniform in time; quantitative; mean-field limit
URI
https://basepub.dauphine.fr/handle/123456789/3820
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Mouhot, Clément
Mischler, Stéphane
Type
Document de travail / Working paper
Item number of pages
60
Abstract (EN)
This paper is devoted to the study of mean-field limit for systems of indistinguables particles undergoing collision processes. As formulated by [Kac, 1956] this limit is based on the chaos propagation, and we (1) prove and quantify this property for Boltzmann collision processes with unbounded collision rates (hard spheres or long-range interactions), (2) prove and quantify this property \emph{uniformly in time}. This yields the first chaos propagation result for the spatially homogeneous Boltzmann equation for true (without cut-off) Maxwell molecules whose "Master equation" shares similarities with the one of a Lévy process and the first quantitative chaos propagation result for the spatially homogeneous Boltzmann equation for hard spheres (improvement of the convergence result of [Sznitman, 1984]. Moreover our chaos propagation results are the first uniform in time ones for Boltzmann collision processes (to our knowledge), which partly answers the important question raised by Kac of relating the long-time behavior of a particle system with the one of its mean-field limit, and we provide as a surprising application a new proof of the well-known result of gaussian limit of rescaled marginals of uniform measure on the N-dimensional sphere as N goes to infinity (more applications will be provided in a forthcoming work). Our results are based on a new method which reduces the question of chaos propagation to the one of proving a purely functional estimate on some generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting non-linear equation (stability estimates).

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.