• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Compressive Wave Computation

Thumbnail
Date
2011
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00368919/en/
Indexation documentaire
Sciences connexes (physique, astrophysique)
Subject
wave equation; Compressed sampling; compressed sensing; sparsity; L1; compressive sensing
Nom de la revue
Foundations of Computational Mathematics
Volume
11
Numéro
3
Date de publication
2011
Pages article
257-303
Nom de l'éditeur
Springer
DOI
http://dx.doi.org/10.1007/s10208-011-9085-5
URI
https://basepub.dauphine.fr/handle/123456789/3750
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Demanet, Laurent
Peyré, Gabriel
Type
Article accepté pour publication ou publié
Résumé en anglais
This paper considers large-scale simulations of wave propagation phenomena. We argue that it is possible to accurately compute a wavefield by decomposing it onto a largely incomplete set of eigenfunctions of the Helmholtz operator, chosen at random, and that this provides a natural way of parallelizing wave simulations for memory-intensive applications. This paper shows that L1-Helmholtz recovery makes sense for wave computation, and identifies a regime in which it is provably effective: the one-dimensional wave equation with coefficients of small bounded variation. Under suitable assumptions we show that the number of eigenfunctions needed to evolve a sparse wavefield defined on N points, accurately with very high probability, is bounded by C log(N) log(log(N)), where C is related to the desired accuracy and can be made to grow at a much slower rate than N when the solution is sparse. The PDE estimates that underlie this result are new to the authors' knowledge and may be of independent mathematical interest; they include an L1 estimate for the wave equation, an estimate of extension of eigenfunctions, and a bound for eigenvalue gaps in Sturm-Liouville problems. Numerical examples are presented in one spatial dimension and show that as few as 10 percents of all eigenfunctions can suffice for accurate results. Finally, we argue that the compressive viewpoint suggests a competitive parallel algorithm for an adjoint-state inversion method in reflection seismology.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.