• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Approximate solutions of Happynet on cubic graphs

Pottié, Olivier; Giannakos, Aristotelis (2006), Approximate solutions of Happynet on cubic graphs, Foundations of Computing and Decision Sciences, 31, 3-4, p. 233-242

View/Open
cahierLamsade226.pdf (288.3Kb)
Type
Article accepté pour publication ou publié
Date
2006
Journal name
Foundations of Computing and Decision Sciences
Volume
31
Number
3-4
Publisher
Institute of Computing Science
Pages
233-242
Metadata
Show full item record
Author(s)
Pottié, Olivier
Giannakos, Aristotelis
Abstract (EN)
The HAPPYNET problem is defined as follows : Given an undirected simple graph G with integer weights wvu on its edges vu ∈ E(G), find a function s : V(G) → {-1, 1} such that ∀v ∈ V (G), v is happy in G, i.e. such that ∑u∈Γs(v)s(u) wvu ≥ 0. It is easy to see [3] that HAPPYNET has always a solution, no matter what the input is. However, no polynomial algorithm is known for this problem, which is complete for the class PLS (see [4] for a definition). Parberry et al. have shown in [7] that in the case of cubic graphs (i.e. of maximum degree 3) is as difficult as for arbitrary graphs. A ρ-approximate solution to a HAPPYNET instance of size n can be defined for 0 ≤ ρ ≤ 1 as a natural extension of the solution function, with at least ρn happy vertices. In this paper, we present a polynomial-time algorithm that finds a ρ-approximate solution for the HAPPYNET problem on cubic graphs, with ρ ≥ ¾.
Subjects / Keywords
Polynomial algorithm; Graph

Related items

Showing items related by title and author.

  • Thumbnail
    The max quasi-independent set problem 
    Bourgeois, Nicolas; Giannakos, Aristotelis; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis; Pottié, Olivier (2012) Article accepté pour publication ou publié
  • Thumbnail
    The Max Quasi-Independent Set Problem 
    Pottié, Olivier; Paschos, Vangelis; Milis, Ioannis; Lucarelli, Giorgio; Giannakos, Aristotelis; Bourgeois, Nicolas (2010) Communication / Conférence
  • Thumbnail
    Algorithmic games 
    Paschos, Vangelis; Giannakos, Aristotelis; Pottié, Olivier (2008) Chapitre d'ouvrage
  • Thumbnail
    A Note on Using T-joins to Approximate Solutions for min Graphic k-Path TSP 
    Kheffache, Rezika; Giannakos, Aristotelis (2012-12) Document de travail / Working paper
  • Thumbnail
    On S-packing edge-colorings of cubic graphs 
    Gastineau, Nicolas; Togni, Olivier (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo