• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Homogenization of nonlinear scalar conservation laws

Thumbnail
Date
2009
Link to item file
http://hal.archives-ouvertes.fr/hal-00154678/en/
Dewey
Probabilités et Mathématiques appliquées
Sujet
Homogenization ; Scalar conservation law ; Kinetic formulation
Journal issue
Archive for Rational Mechanics and Analysis
Volume
192
Number
1
Publication date
04-2009
Article pages
117-164
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s00205-008-0123-7
URI
https://basepub.dauphine.fr/handle/123456789/368
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Dalibard, Anne-Laure
Type
Article accepté pour publication ou publié
Abstract (EN)
We study the limit as $\e\to 0$ of the entropy solutions of the equation $\p_t \ue + \dv_x\left[A\left(\frac{x}{\e},\ue\right)\right] =0$. We prove that the sequence $\ue$ two-scale converges towards a function $u(t,x,y)$, and $u$ is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in $L^1_{\text{loc}}$.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.