dc.contributor.author | Tuza, Zsolt | |
dc.contributor.author | Bazgan, Cristina | |
dc.date.accessioned | 2010-03-09T14:42:25Z | |
dc.date.available | 2010-03-09T14:42:25Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3675 | |
dc.language.iso | en | en |
dc.subject | Maximum cut | en |
dc.subject | Cubic graph | en |
dc.subject | Approximation algorithm | en |
dc.subject | Vertex decomposition | en |
dc.subject | Unicyclic graph | en |
dc.subject.ddc | 511 | en |
dc.title | Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3 | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | The best approximation algorithm for Max Cut in graphs of maximum degree 3 uses semidefinite programming, has approximation ratio 0.9326, and its running time is Θ(n3.5logn); but the best combinatorial algorithms have approximation ratio 4/5 only, achieved in O(n2) time [J.A. Bondy, S.C. Locke, J. Graph Theory 10 (1986) 477–504; E. Halperin, et al., J. Algorithms 53 (2004) 169–185]. Here we present an improved combinatorial approximation, which is a 5/6-approximation algorithm that runs in O(n2) time, perhaps improvable even to O(n). Our main tool is a new type of vertex decomposition for graphs of maximum degree 3. | en |
dc.relation.isversionofjnlname | Journal of Discrete Algorithms | |
dc.relation.isversionofjnlvol | 6 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 2008-09 | |
dc.relation.isversionofjnlpages | 510-519 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.jda.2007.02.002 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |