• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3

Thumbnail
Date
2008
Dewey
Principes généraux des mathématiques
Sujet
Maximum cut; Cubic graph; Approximation algorithm; Vertex decomposition; Unicyclic graph
Journal issue
Journal of Discrete Algorithms
Volume
6
Number
3
Publication date
09-2008
Article pages
510-519
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.jda.2007.02.002
URI
https://basepub.dauphine.fr/handle/123456789/3675
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Tuza, Zsolt
Bazgan, Cristina
Type
Article accepté pour publication ou publié
Abstract (EN)
The best approximation algorithm for Max Cut in graphs of maximum degree 3 uses semidefinite programming, has approximation ratio 0.9326, and its running time is Θ(n3.5logn); but the best combinatorial algorithms have approximation ratio 4/5 only, achieved in O(n2) time [J.A. Bondy, S.C. Locke, J. Graph Theory 10 (1986) 477–504; E. Halperin, et al., J. Algorithms 53 (2004) 169–185]. Here we present an improved combinatorial approximation, which is a 5/6-approximation algorithm that runs in O(n2) time, perhaps improvable even to O(n). Our main tool is a new type of vertex decomposition for graphs of maximum degree 3.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.