• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Weighted coloring on planar, bipartite and split graphs: complexity and approximation

Paschos, Vangelis; Monnot, Jérôme; Escoffier, Bruno; Demange, Marc; de Werra, Dominique (2009), Weighted coloring on planar, bipartite and split graphs: complexity and approximation, Discrete Applied Mathematics, 157, 4, p. 819-832. http://dx.doi.org/10.1016/j.dam.2008.06.013

View/Open
publi962.pdf (189.1Kb)
Type
Article accepté pour publication ou publié
Date
2009
Journal name
Discrete Applied Mathematics
Volume
157
Number
4
Publisher
Elsevier
Pages
819-832
Publication identifier
http://dx.doi.org/10.1016/j.dam.2008.06.013
Metadata
Show full item record
Author(s)
Paschos, Vangelis
Monnot, Jérôme cc
Escoffier, Bruno
Demange, Marc
de Werra, Dominique
Abstract (EN)
We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-hard in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus on approximability in general bipartite graphs and improve earlier approximation results by giving approximation ratios matching inapproximability bounds. We next deal with min weighted edge coloring in bipartite graphs. We show that this problem remains strongly NP-hard, even in the case where the input graph is both cubic and planar. Furthermore, we provide an inapproximability bound of 7/6−ε, for any ε>0 and we give an approximation algorithm with the same ratio. Finally, we show that min weighted node coloring in split graphs can be solved by a polynomial time approximation scheme.
Subjects / Keywords
Graph coloring; Weighted node coloring; Weighted edge coloring; Approximability; NP-completeness; Planar graphs; Bipartite graphs; Split graphs

Related items

Showing items related by title and author.

  • Thumbnail
    Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation 
    de Werra, Dominique; Demange, Marc; Escoffier, Bruno; Monnot, Jérôme; Paschos, Vangelis (2004) Communication / Conférence
  • Thumbnail
    Complexity and approximation results for the min weighted node coloring problem 
    Escoffier, Bruno; Demange, Marc; Paschos, Vangelis; de Werra, Dominique; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Thumbnail
    Weighted edge coloring 
    Escoffier, Bruno; Demange, Marc; de Werra, Dominique; Milis, Ioannis; Lucarelli, Giorgio; Paschos, Vangelis; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Thumbnail
    Weighted node coloring: when stable sets are expensive 
    Demange, Marc; de Werra, Dominique; Monnot, Jérôme; Paschos, Vangelis (2002) Communication / Conférence
  • Thumbnail
    Probabilistic graph-coloring in bipartite and split graphs 
    Murat, Cécile; Escoffier, Bruno; Della Croce, Federico; Bourgeois, Nicolas; Paschos, Vangelis (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo