• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory

Thumbnail
Date
2010
Link to item file
http://hal.archives-ouvertes.fr/hal-00363273/en/
Dewey
Probabilités et mathématiques appliquées
Sujet
Hamilton-Jacobi-Bellman equations in infinite dimensions; Dynamic programming; state equations with memory; viscosity solutions
Journal issue
ESAIM. COCV
Volume
16
Number
3
Publication date
2010
Article pages
744-763
Publisher
EDP Sciences
DOI
http://dx.doi.org/10.1051/cocv/2009024
URI
https://basepub.dauphine.fr/handle/123456789/3572
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Tahraoui, Rabah
Carlier, Guillaume
Type
Article accepté pour publication ou publié
Abstract (EN)
This article is devoted to the optimal control of state equations with memory of the form: ?[x(t) = F\left(x(t),u(t), \int_0^{+\infty} A(s) x(t-s) ds\right), \; t>0, with initial conditions x(0)=x, \; x(-s)=z(s), s>0.]Denoting by $y_{x,z,u}$ the solution of the previous Cauchy problem and: \[v(x,z):=\inf_{u\in V} \left\{ \int_0^{+\infty} e^{-\lambda s } L(y_{x,z,u}(s), u(s))ds \right\}\] where $V$ is a class of admissible controls, we prove that $v$ is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form: \[\lambda v(x,z)+H(x,z,\nabla_x v(x,z))+\=0\] in the sense of the theory of viscosity solutions in infinite-dimensions of M. Crandall and P.-L. Lions.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.