A strategy for non-strictly convex transport costs and the example of ║x−y║p in R2
Carlier, Guillaume; Santambrogio, Filippo; de Pascale, Luigi (2010), A strategy for non-strictly convex transport costs and the example of ║x−y║p in R2, Communications in Mathematical Sciences, 8, 4, p. 931-941. 10.4310/CMS.2010.v8.n4.a8
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-00417303/Date
2010Journal name
Communications in Mathematical SciencesVolume
8Number
4Publisher
International Press
Pages
931-941
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper deals with the existence of optimal transport maps for some optimal transport problems with a convex but non strictly convex cost. We give a decomposition strategy to address this issue. As a consequence of our procedure, we have to treat some transport problems, of independent interest, with a convex constraint on the displacement. To illustrate possible results obtained through this general approach, we prove exisence of optimal transport maps in the case where the source measure is absolutely continuous with respect to the Lebesque measure and the transportation cost is of the form h(\| x-y\|) with h strictly convex increasing and \|.\| an arbitrary norm in R^2.Subjects / Keywords
optimal transport; Monge-Kantorovich problem; existence of optimal maps; general normsRelated items
Showing items related by title and author.
-
Santambrogio, Filippo; Carlier, Guillaume; Galichon, Alfred (2010) Article accepté pour publication ou publié
-
Santambrogio, Filippo; Jimenez, Chloé; Carlier, Guillaume (2008) Article accepté pour publication ou publié
-
Santambrogio, Filippo; Carlier, Guillaume (2012) Article accepté pour publication ou publié
-
Santambrogio, Filippo (2009) Communication / Conférence
-
Buttazzo, Giuseppe; Santambrogio, Filippo (2009) Article accepté pour publication ou publié