• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A macroscopic crowd motion model of gradient flow type

Santambrogio, Filippo; Roudneff-Chupin, Aude; Maury, Bertrand (2010), A macroscopic crowd motion model of gradient flow type, Mathematical Models and Methods in Applied Sciences, 20, 10, p. 1787-1821. http://dx.doi.org/10.1142/S0218202510004799

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00418511/fr/
Date
2010
Journal name
Mathematical Models and Methods in Applied Sciences
Volume
20
Number
10
Publisher
World Scientific
Pages
1787-1821
Publication identifier
http://dx.doi.org/10.1142/S0218202510004799
Metadata
Show full item record
Author(s)
Santambrogio, Filippo
Roudneff-Chupin, Aude
Maury, Bertrand
Abstract (EN)
A simple model to handle the flow of people in emergency evacuation situations is considered: at every point x, the velocity U(x) that individuals at x would like to realize is given. Yet, the incompressibility constraint prevents this velocity field to be realized and the actual velocity is the projection of the desired one onto the set of admissible velocities. Instead of looking at a microscopic setting (where individuals are represented by rigid discs), here the macroscopic approach is investigated, where the unknwon is the evolution of the density . If a gradient structure is given, say U is the opposite of the gradient of D where D is, for instance, the distance to the exit door, the problem is presented as a Gradient Flow in the Wasserstein space of probability measures. The functional which gives the Gradient Flow is neither finitely valued (since it takes into account the constraints on the density), nor geodesically convex, which requires for an ad-hoc study of the convergence of a discrete scheme.
Subjects / Keywords
Continuity Equation; Crowd Motion; Gradient Flow; Wasserstein Distance

Related items

Showing items related by title and author.

  • Thumbnail
    Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability 
    Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015) Article accepté pour publication ou publié
  • Thumbnail
    Macroscopic models of collective motion and self-organization 
    Degond, Pierre; Frouvelle, Amic; Liu, Jian-Guo; Motsch, Sébastien; Navoret, Laurent (2013) Article accepté pour publication ou publié
  • Thumbnail
    Macroscopic models of collective motion and self-organization 
    Navoret, Laurent; Motsch, Sébastien; Liu, Jian-Guo; Frouvelle, Amic; Degond, Pierre (2013) Rapport
  • Thumbnail
    Models and applications of Optimal Transport in Economics, Traffic and Urban Planning 
    Santambrogio, Filippo (2009) Communication / Conférence
  • Thumbnail
    A Mass Transportation Model for the Optimal Planning of an Urban Region 
    Buttazzo, Giuseppe; Santambrogio, Filippo (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo