• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions

Dolbeault, Jean; Esteban, Maria J.; Tarantello, Gabriella (2008), The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 7, 2, p. 313–341. http://dx.doi.org/10.2422/2036-2145.2008.2.05

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00139062/en/
Date
2008
Journal name
Annali della Scuola Normale Superiore di Pisa. Classe di Scienze
Volume
7
Number
2
Publisher
Le Edizioni della Normale
Pages
313–341
Publication identifier
http://dx.doi.org/10.2422/2036-2145.2008.2.05
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Esteban, Maria J. cc
Tarantello, Gabriella
Abstract (EN)
We first prove a weighted inequality of Moser-Trudinger type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than -1. Without symmetry assumption, it holds if and only if the parameter is in the interval (-1,0]. The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Hardy-Sobolev inequality, as established by Caffarelli-Kohn-Nirenberg, in two space dimensions. In fact, for suitable sets of parameters (asymptotically sharp) we prove symmetry or symmetry breaking by means of a blow-up method. In this way, the weighted Moser-Trudinger inequality appears as a limit case of the Hardy-Sobolev inequality.
Subjects / Keywords
Weighted Moser-Trudinger inequality; Hardy-Sobolev inequality; Onofri's inequality; Caffarelli-Kohn-Nirenberg inequality; extremal functions; Kelvin transformation; Emden-Fowler transformation; stereographic projection; radial symmetry; symmetry breaking; blow-up analysis

Related items

Showing items related by title and author.

  • Thumbnail
    On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael; Tarantello, Gabriella (2009) Article accepté pour publication ou publié
  • Thumbnail
    Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael; Muratori, Matteo (2017) Article accepté pour publication ou publié
  • Thumbnail
    A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities 
    Esteban, Maria J.; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Symmetry of optimizers of the Caffarelli-Kohn-Nirenberg inequalities 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016) Document de travail / Working paper
  • Thumbnail
    Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities 
    Dolbeault, Jean; Esteban, Maria J. (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo