• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Optimal Control under Stochastic Target Constraints

Bouchard, Bruno (2009), Optimal Control under Stochastic Target Constraints, Symposium on Optimal Stopping with Applications, Turku, FINLAND

Type
Communication / Conférence
Date
2009
Conference title
Symposium on Optimal Stopping with Applications
Conference city
Turku
Conference country
FINLAND
Metadata
Show full item record
Author(s)
Bouchard, Bruno
Abstract (EN)
We study a class of Markovian optimal stochastic control problems in which the controlled process $Z^\nu$ is constrained to satisfy an a.s.~constraint $Z^\nu(T)\in G\subset \R^{d+1}$ $\Pas$ at some final time $T>0$. When the set is of the form $G:=\{(x,y)\in \R^d\x \R~:~g(x,y)\ge 0\}$, with $g$ non-decreasing in $y$, we provide a Hamilton-Jacobi-Bellman characterization of the associated value function. It gives rise to a state constraint problem where the constraint can be expressed in terms of an auxiliary value function $w$ which characterizes the set $D:=\{(t,Z^\nu(t))\in [0,T]\x\R^{d+1}~:~Z^\nu(T)\in G\;a.s.$ for some $ \nu\}$. Contrary to standard state constraint problems, the domain $D$ is not given a-priori and we do not need to impose conditions on its boundary. It is naturally incorporated in the auxiliary value function $w$ which is itself a viscosity solution of a non-linear parabolic PDE. Applying ideas recently developed in Bouchard, Elie and Touzi (2008), our general result also allows to consider optimal control problems with moment constraints of the form $\Esp{g(Z^\nu(T))}\ge 0$ or $\Pro{g(Z^\nu(T))\ge 0}\ge p$.
Subjects / Keywords
Stochastic Target Problem; discontinuous viscosity solutions; Optimal Control; State Constraint Problem

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal Control under Stochastic Target Constraints 
    Bouchard, Bruno; Elie, Romuald; Imbert, Cyril (2010) Article accepté pour publication ou publié
  • Thumbnail
    Generalized stochastic target problems for pricing and partial hedging under loss constraints - Application in optimal book liquidation 
    Bouchard, Bruno; Dang, Ngoc Minh (2013) Article accepté pour publication ou publié
  • Thumbnail
    Quantile hedging and optimal control under stochastic target constraints 
    Elie, Romuald (2009) Communication / Conférence
  • Thumbnail
    Optimal Control versus Stochastic Target problems: An Equivalence Result 
    Bouchard, Bruno; Dang, Ngoc Minh (2012) Article accepté pour publication ou publié
  • Thumbnail
    A stochastic target formulation for optimal switching problems in finite horizon 
    Bouchard, Bruno (2009-09-24) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo