Challenging Restricted Isometry Constants with Greedy Pursuit
dc.contributor.author | Dossal, Charles | |
dc.contributor.author | Peyré, Gabriel
HAL ID: 1211 | |
dc.contributor.author | Fadili, Jalal
HAL ID: 15510 | |
dc.date.accessioned | 2010-02-16T09:33:11Z | |
dc.date.available | 2010-02-16T09:33:11Z | |
dc.date.issued | 2009-04 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3469 | |
dc.language.iso | en | en |
dc.subject | Compressed sensing | en |
dc.subject | compressive sampling | en |
dc.subject | random matrices | en |
dc.subject | restricted isometry constants | en |
dc.subject | sparsity | en |
dc.subject.ddc | 621.3 | en |
dc.title | Challenging Restricted Isometry Constants with Greedy Pursuit | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | This paper proposes greedy numerical schemes to compute lower bounds of the restricted isometry constants that are central in compressed sensing theory. Matrices with small restricted isometry constants enable stable recovery from a small set of random linear measurements. We challenge this compressed sampling recovery using greedy pursuit algorithms that detect ill-conditionned sub-matrices. It turns out that these sub-matrices have large isometry constants and hinder the performance of compressed sensing recovery. | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00373450/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Traitement du signal | en |
dc.relation.conftitle | 2009 IEEE Information Theory Workshop | en |
dc.relation.confdate | 2009-10 | |
dc.relation.confcity | Taormine | en |
dc.relation.confcountry | Italie | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |