• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

From Knothe's transport to Brenier's map and a continuation method for optimal transport

Santambrogio, Filippo; Carlier, Guillaume; Galichon, Alfred (2010), From Knothe's transport to Brenier's map and a continuation method for optimal transport, SIAM Journal on Mathematical Analysis, 41, 6, p. 2554-2576. http://dx.doi.org/10.1137/080740647

Type
Article accepté pour publication ou publié
Date
2010
Journal name
SIAM Journal on Mathematical Analysis
Volume
41
Number
6
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
2554-2576
Publication identifier
http://dx.doi.org/10.1137/080740647
Metadata
Show full item record
Author(s)
Santambrogio, Filippo
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Galichon, Alfred
Abstract (EN)
A simple procedure to map two probability measures in R^d is the so-called Knothe-Rosenblatt rearrangement, which consists in rearranging monotonically the marginal distributions of the first coordinate, and then the conditional distributions, iteratively. We show that this mapping is the limit of solutions to a class of Monge-Kantorovich mass transportation problems with quadratic costs, with the weights of the coordinates asymptotically dominating one another. This enables us to design a continuation method for numerically solving the optimal transport problem.
Subjects / Keywords
continuation methods; optimal transport; rearrangement of vector-valued maps; Knothe-Rosenblatt transport

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal transportation with traffic congestion and Wardrop equilibria 
    Santambrogio, Filippo; Jimenez, Chloé; Carlier, Guillaume (2008) Article accepté pour publication ou publié
  • Thumbnail
    Vector Quantile Regression: An optimal transport approach 
    Carlier, Guillaume; Chernozhukov, Victor; Galichon, Alfred (2016) Article accepté pour publication ou publié
  • Thumbnail
    SISTA : learning optimal transport costs under sparsity constraints 
    Carlier, Guillaume; Dupuy, Arnaud; Galichon, Alfred; Sun, Yifei (2021) Document de travail / Working paper
  • Thumbnail
    A strategy for non-strictly convex transport costs and the example of ║x−y║p in R2 
    Carlier, Guillaume; Santambrogio, Filippo; de Pascale, Luigi (2010) Article accepté pour publication ou publié
  • Thumbnail
    Pareto efficiency for the concave order and multivariate comonotonicity 
    Carlier, Guillaume; Dana, Rose-Anne; Galichon, Alfred (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo