Deviation bounds for additive functionals of Markov processes
Cattiaux, Patrick; Guillin, Arnaud (2008), Deviation bounds for additive functionals of Markov processes, ESAIM. Probability and Statistics, 12, p. 12-29. http://dx.doi.org/10.1051/ps:2007032
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00020035/en/Date
2008Journal name
ESAIM. Probability and StatisticsVolume
12Publisher
EDP Sciences
Pages
12-29
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we derive non asymptotic deviation bounds for $$\P_\nu (|\frac 1t \int_0^t V(X_s) ds - \int V d\mu | \geq R)$$ where $X$ is a $\mu$ stationary and ergodic Markov process and $V$ is some $\mu$ integrable function. These bounds are obtained under various moments assumptions for $V$, and various regularity assumptions for $\mu$. Regularity means here that $\mu$ may satisfy various functional inequalities (F-Sobolev, generalized Poincar\'e etc...).Subjects / Keywords
additive functionals; functional inequalities; Deviation inequalitiesRelated items
Showing items related by title and author.
-
Chen, Xia; Guillin, Arnaud (2004) Article accepté pour publication ou publié
-
Moderate deviations of empirical periodogram and non-linear functionals of moving average processes Djellout, Hacene; Guillin, Arnaud; Wu, Liming (2006) Article accepté pour publication ou publié
-
Lipster, Robert; Guillin, Arnaud (2006) Article accepté pour publication ou publié
-
Malrieu, Florent; Guillin, Arnaud; Cattiaux, Patrick (2008) Article accepté pour publication ou publié
-
Guillin, Arnaud; Lipster, Robert (2005) Article accepté pour publication ou publié