Author
Schmeiser, Christian
Mouhot, Clément
Dolbeault, Jean
Type
Article accepté pour publication ou publié
Abstract (FR)
Cette note est consacrée à une méthode simple pour démontrer l'hypocoercivité associée à une équation cinétique contenant un opérateur de relaxation linéaire ; il s'agit de construire une fonctionnelle de Lyapunov adaptée vérifiant une inégalité de type Gronwall. La méthode distingue clairement la coercivité au niveau microscopique, qui provient directement des propriétés de l'opérateur de relaxation, et une inégalité de trou spectral pour la densité spatiale, qui est reliée à la limite de diffusion. Elle améliore les résultats antérieurs. Notre approche est illustrée par le modèle de BGK linéaire et par un opérateur de relaxation qui correspond, au niveau macroscopique, à la diffusion rapide linéarisée.
Abstract (EN)
This note is devoted to a simple method for proving hypocoercivity of the solutions of a kinetic equation involving a linear time relaxation operator, i.e. the construction of an adapted Lyapunov functional satisfying a Gronwall-type inequality. The method clearly distinguishes the coercivity at microscopic level, which directly arises from the properties of the relaxation operator, and a spectral gap inequality at the macroscopic level for the spatial density, which is connected to the diffusion limit. It improves on previously known results. Our approach is illustrated by the linear BGK model and a relaxation operator which corresponds at macroscopic level to the linearized fast diffusion.